Chen, H. W., Chiou, C. S., & Chang, S. H. (2017). Comparison of methylparaben, ethylparaben and propylparaben adsorption onto magnetic nanoparticles with phenyl group. Powder Technology, 311, 426-431.
Ariffin, M. M., Sohaimi, N. M., Yih, B. S., & Saleh, N. M. (2019). Magnetite nanoparticles coated with surfactant Sylgard 309 and its application as an adsorbent for paraben extraction from pharmaceutical and water samples. Analytical Methods, 11(32), 4126-4136.
Ariffin, M. M., Azmi, A. H. M., Saleh, N. M., Mohamad, S., & Rozi, S. K. M. (2019). Surfactant functionalisation of magnetic nanoparticles: A greener method for parabens determination in water samples by using magnetic solid phase extraction. Microchemical Journal, 147, 930-940.
Dil, E. A., Ghaedi, M., Asfaram, A., & Tayebi, L. (2021). Simultaneous selective enrichment of methylparaben, propylparaben, and butylparaben from cosmetics samples based on syringe-to-syringe magnetic fluid phase microextraction. Talanta, 221, 121547.
Ramin, N. A. (2023). Green magnetic molecularly imprinted polymer for selective removal of parabens from cosmetic samples (Doctoral dissertation, Universiti Tun Hussein Onn Malaysia).
Abbasghorbani, M., Attaran, A., & Payehghadr, M. (2013). Solvent‐assisted dispersive micro‐SPE by using aminopropyl‐functionalized magnetite nanoparticle followed by GC‐PID for quantification of parabens in aqueous matrices. Journal of separation science, 36(2), 311-319.
Maghami, F., Abrishamkar, M., Goodajdar, B. M., & Hossieni, M. (2021). Simultaneous adsorption of methylparaben and propylparaben dyes from aqueous solution using synthesized Albizia lebbeck leaves-capped silver nanoparticles. Desalination and Water Treatment, 228, 376-388.
de Lima, L. F., Daikuzono, C. M., Miyazaki, C. M., Pereira, E. A., & Ferreira, M. (2020). Layer-by-Layer nanostructured films of magnetite nanoparticles and polypyrrole towards synergistic effect on methylparaben electrochemical detection. Applied Surface Science, 505, 144278.
Kumar, S., Bhogal, S., Malik, A. K., & Aulakh, J. S. (2023). Magnetic graphene oxide carbon dot nanocomposites as an efficient quantification tool against parabens in water and cosmetic samples. Environmental Science and Pollution Research, 30(47), 104319-104335.
Antoniou, G., & Samanidou, V. (2022). Magnetic nanomaterials and nanostructures in sample preparation prior to liquid chromatography. Magnetochemistry, 8(3), 29.
Mashile, G. P., Mpupa, A., Nqombolo, A., Dimpe, K. M., & Nomngongo, P. N. (2020). Recyclable magnetic waste tyre activated carbon-chitosan composite as an effective adsorbent rapid and simultaneous removal of methylparaben and propylparaben from aqueous solution and wastewater. Journal of Water Process Engineering, 33, 101011.
You, X., Piao, C., & Chen, L. (2016). Preparation of a magnetic molecularly imprinted polymer by atom‐transfer radical polymerization for the extraction of parabens from fruit juices. Journal of Separation Science, 39(14), 2831-2838.
Kohli, H. P., Gupta, S., & Chakraborty, M. (2019). Stability and performance study of emulsion nanofluid membrane: A combined approach of adsorption and extraction of Ethylparaben. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 579, 123675.
Correa-Navarro, Y. M., Rivera-Giraldo, J. D., & Cardona-Castaño, J. A. (2024). Modified Cellulose for Adsorption of Methylparaben and Butylparaben from an Aqueous Solution. ACS omega, 9(28), 30224-30233.
Susanti, I., & Holik, H. A. (2021). Application of Magnetic Solid-Phase Extraction (Mspe) in Various Types of Samples. Int. J. Appl. Pharm., 13, 59-68.
Ariffin, M. M., Azmi, A. H. M., Saleh, N. M., Mohamad, S., & Rozi, S. K. M. (2019). Surfactant functionalisation of magnetic nanoparticles: A greener method for parabens determination in water samples by using magnetic solid phase extraction. Microchemical Journal, 147, 930-940.
Dil, E. A., Ghaedi, M., Asfaram, A., & Tayebi, L. (2021). Simultaneous selective enrichment of methylparaben, propylparaben, and butylparaben from cosmetics samples based on syringe-to-syringe magnetic fluid phase microextraction. Talanta, 221, 121547.
Nguyen, V. H., Thi, L. A. P., Chandana, P. S., Do, H. T., Pham, T. H., Lee, T., ... & Huong, P. T. (2021). The degradation of paraben preservatives: Recent progress and sustainable approaches toward photocatalysis. Chemosphere, 276, 130163.
Pezhhanfar, S., Farajzadeh, M. A., Hosseini-Yazdi, S. A., & Mogaddam, M. R. A. (2024). Extraction and preconcentration of parabens from the human follicular fluid through dispersive micro solid phase extraction using microporous MIL-68 (In) followed by in-situ effervescence-boosted dispersive liquid-liquid microextraction. Journal of Pharmaceutical and Biomedical Analysis, 240, 115926.
Chikhi, B., Gouasmi, M., Mounia, A., Gasem, L., Saadi, A., Mekaoui, N., ... & Boudjemaa, A. (2025). Propyl paraben removal using Cu2O/ZnO-NPs photocatalyst elaborated via green method. Environmental Science and Pollution Research, 1-16.
Yildiz, E., & Calisir, Ü. (2024). Liquid–liquid microextraction method based on switchable hydrophilic solvent for determination of parabens in cream samples. Chemical Papers, 78(13), 7633-7642.
Ji, J., Chen, G., Zhao, J., & Wei, Y. (2020). Efficient removal of Pb (II) by inexpensive magnetic adsorbents prepared from one-pot pyrolysis of waste tyres involved magnetic nanoparticles. Fuel, 282, 118715.
Botella, M. B., Lemos, A. A., Lujan, C. E., Wuilloud, R. G., & Quintas, P. Y. (2024). Recent advances of extraction and separation of emerging organic contaminants through the application of natural deep eutectic solvents. TrAC Trends in Analytical Chemistry, 171, 117518.
Di, S., Ning, T., Yu, J., Chen, P., Yu, H., Wang, J., ... & Zhu, S. (2020). Recent advances and applications of magnetic nanomaterials in environmental sample analysis. TrAC Trends in Analytical Chemistry, 126, 115864.
Siritham, C., Thammakhet-Buranachai, C., Thavarungkul, P., & Kanatharana, P. (2018). A stir foam composed of graphene oxide, poly (ethylene glycol) and natural latex for the extraction of preservatives and antioxidant. Microchimica Acta, 185, 1-9.
Simon, S. M., Sajna, M. S., Prakashan, V. P., Jose, T. A., Biju, P. R., Joseph, C., & Unnikrishnan, N. V. (2021). Functionalized magnetic nanoparticles in sample pre-treatment.
Kumar, S., & Nagar, G. (2024, June). Threat Modeling for Cyber Warfare Against Less Cyber-Dependent Adversaries. In European Conference on Cyber Warfare and Security (Vol. 23, No. 1, pp. 257-264).
JOSE, T. A., BIJU, P., JOSEPH, C., & UNNIKRISHNAN, N. (2021). Functionalized Magnetic Nanoparticles in Sample Pre-treatment. Analytical Applications of Functionalized Magnetic Nanoparticles, 79.
Alampanos, V. D., & Lambropoulou, D. A. (2024). Hydrogel sorbent-based sample preparation processes as green alternatives for the extraction of organic contaminants followed by chromatographic analysis. TrAC Trends in Analytical Chemistry, 117687.
Dalmaz, A., & Özak, S. S. (2022). DES-based vortex-assisted liquid-liquid microextraction procedure developed for the determination of paraben preservatives in mouthwashes. Microchemical Journal, 179, 107445.
Kumar, S., Menezes, A., Giri, S., & Kotikela, S. What The Phish! Effects of AI on Phishing Attacks and Defense. In Proceedings of the International Conference on AI Research. Academic Conferences and publishing limited.
Zadeh, R. J., Sayadi, M. H., & Rezaei, M. R. (2021). Synthesis of Thiol modified magMCM-41 nanoparticles with rice husk ash as a robust, high effective, and recycling magnetic sorbent for the removal of herbicides. Journal of Environmental Chemical Engineering, 9(1), 104804.
Manoharan, A., & Nagar, G. MAXIMIZING LEARNING TRAJECTORIES: AN INVESTIGATION INTO AI-DRIVEN NATURAL LANGUAGE PROCESSING INTEGRATION IN ONLINE EDUCATIONAL PLATFORMS.
Ferdinand, J. (2024). Marine Medical Response: Exploring the Training, Role and Scope of Paramedics.
Nagar, G. (2018). Leveraging Artificial Intelligence to Automate and Enhance Security Operations: Balancing Efficiency and Human Oversight. Valley International Journal Digital Library, 78-94.
Kumar, S., & Nagar, G. (2024, June). Threat Modeling for Cyber Warfare Against Less Cyber-Dependent Adversaries. In European Conference on Cyber Warfare and Security (Vol. 23, No. 1, pp. 257-264).
Arefin, S., & Simcox, M. (2024). AI-Driven Solutions for Safeguarding Healthcare Data: Innovations in Cybersecurity. International Business Research, 17(6), 1-74.
Nagar, G. (2024). The evolution of ransomware: tactics, techniques, and mitigation strategies. International Journal of Scientific Research and Management (IJSRM), 12(06), 1282-1298.
Ferdinand, J. (2023). The Key to Academic Equity: A Detailed Review of EdChat’s Strategies.
Manoharan, A. UNDERSTANDING THE THREAT LANDSCAPE: A COMPREHENSIVE ANALYSIS OF CYBER-SECURITY RISKS IN 2024.
Nagar, G., & Manoharan, A. (2022). THE RISE OF QUANTUM CRYPTOGRAPHY: SECURING DATA BEYOND CLASSICAL MEANS. 04. 6329-6336. 10.56726. IRJMETS24238.
Ferdinand, J. (2023). Marine Medical Response: Exploring the Training, Role and Scope of Paramedics and Paramedicine (ETRSp). Qeios.
Nagar, G., & Manoharan, A. (2022). ZERO TRUST ARCHITECTURE: REDEFINING SECURITY PARADIGMS IN THE DIGITAL AGE. International Research Journal of Modernization in Engineering Technology and Science, 4, 2686-2693.
Ferdinand, J. (2023). Emergence of Dive Paramedics: Advancing Prehospital Care Beyond DMTs.
Nagar, G., & Manoharan, A. (2022). THE RISE OF QUANTUM CRYPTOGRAPHY: SECURING DATA BEYOND CLASSICAL MEANS. 04. 6329-6336. 10.56726. IRJMETS24238.
Nagar, G., & Manoharan, A. (2022). Blockchain technology: reinventing trust and security in the digital world. International Research Journal of Modernization in Engineering Technology and Science, 4(5), 6337-6344.
Kumar, S., Loo, L., & Kocian, L. (2024, October). Blockchain Applications in Cyber Liability Insurance. In 2nd International Conference on Blockchain, Cybersecurity and Internet of Things, BCYIoT.
Danmaisoro, Hafsat. (2024). Designing persuasive communication models for vaccine acceptance in isolated communities: A mass communication approach. World Journal of Advanced Research and Reviews. 2054-2063. 10.30574/ijsra.2024.13.1.188.
Daniel, R., Rao, D. D., Emerson Raja, J., Rao, D. C., & Deshpande, A. (2023). Optimizing Routing in Nature-Inspired Algorithms to Improve Performance of Mobile Ad-Hoc Network. International Journal of Intelligent Systems and Applications in Engineering, 11(8S), 508-516.
Danmaisoro, Hafsat. (2024). Designing persuasive communication models for vaccine acceptance in isolated communities: A mass communication approach. World Journal of Advanced Research and Reviews. 2054-2063. 10.30574/ijsra.2024.13.1.188.
Duary, S., Choudhury, P., Mishra, S., Sharma, V., Rao, D. D., & Aderemi, A. P. (2024, February). Cybersecurity threats detection in intelligent networks using predictive analytics approaches. In 2024 4th International Conference on Innovative Practices in Technology and Management (ICIPTM) (pp. 1-5). IEEE.
Rao, D., & Sharma, S. (2023). Secure and Ethical Innovations: Patenting Ai Models for Precision Medicine, Personalized Treatment, and Drug Discovery in Healthcare. International Journal of Business Management and Visuals, ISSN: 3006-2705, 6(2), 1-8.
Rao, D. D. (2009, November). Multimedia based intelligent content networking for future internet. In 2009 Third UKSim European Symposium on Computer Modeling and Simulation (pp. 55-59). IEEE.
Rao, D. D., Waoo, A. A., Singh, M. P., Pareek, P. K., Kamal, S., & Pandit, S. V. (2024). Strategizing IoT Network Layer Security Through Advanced Intrusion Detection Systems and AI-Driven Threat Analysis. Full Length Article, 12(2), 195-95.
Masarath, S., Waghmare, V. N., Kumar, S., Joshitta, R. S. M., & Rao, D. D. Storage Matched Systems for Single-click Photo Recognitions using CNN. In 2023 International Conference on Communication, Security and Artificial Intelligence (ICCSAI) (pp. 1-7).
Rao, D. D., Jain, A., Sharma, S., Pandit, S. V., & Pandey, R. (2024). Effectual energy optimization stratagems for wireless sensor network collections through fuzzy-based inadequate clustering. SN Computer Science, 5(8), 1-10.
Mahmoud, A., Imam, A., Usman, B., Yusif, A., & Rao, D. (2024). A Review on the Humanoid Robot and its Impact. Journal homepage: https://gjrpublication. com/gjrecs, 4(06).
Rao, D. D., Dhabliya, D., Dhore, A., Sharma, M., Mahat, S. S., & Shah, A. S. (2024, June). Content Delivery Models for Distributed and Cooperative Media Algorithms in Mobile Networks. In 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT) (pp. 1-6). IEEE.
Venkatesh, R., Rao, D. D., Sangeetha, V., Subbalakshmi, C., Bala Dhandayuthapani, V., & Mekala, R. (2024). Enhancing Stability in Autonomous Control Systems Through Fuzzy Gain Scheduling (FGS) and Lyapunov Function Analysis. International Journal of Applied and Computational Mathematics, 10(4), 130.
Rao, D. D., Madasu, S., Gunturu, S. R., D’britto, C., & Lopes, J. Cybersecurity Threat Detection Using Machine Learning in Cloud-Based Environments: A Comprehensive Study. International Journal on Recent and Innovation Trends in Computing and Communication, 12.
Almotairi, S., Rao, D. D., Alharbi, O., Alzaid, Z., Hausawi, Y. M., & Almutairi, J. (2024). Efficient Intrusion Detection using OptCNN-LSTM Model based on hybrid Correlation-based Feature Selection in IoMT. Fusion: Practice & Applications, 16(1).
Dubey, P., Dubey, P., Iwendi, C., Biamba, C. N., & Rao, D. D. (2025). Enhanced IoT-Based Face Mask Detection Framework Using Optimized Deep Learning Models: A Hybrid Approach with Adaptive Algorithms. IEEE Access.
Elhoseny, M., Rao, D. D., Veerasamy, B. D., Alduaiji, N., Shreyas, J., & Shukla, P. K. (2024). Deep Learning Algorithm for Optimized Sensor Data Fusion in Fault Diagnosis and Tolerance. International Journal of Computational Intelligence Systems, 17(1), 1-19.
Padmakala, S., Al-Farouni, M., Rao, D. D., Saritha, K., & Puneeth, R. P. (2024, August). Dynamic and Energy-Efficient Resource Allocation using Bat Optimization in 5G Cloud Radio Access Networks. In 2024 Second International Conference on Networks, Multimedia and Information Technology (NMITCON) (pp. 1-4). IEEE.
Yadav, B., Rao, D. D., Mandiga, Y., Gill, N. S., Gulia, P., & Pareek, P. K. (2024). Systematic Analysis of threats, Machine Learning solutions and Challenges for Securing IoT environment. Journal of Cybersecurity & Information Management, 14(2).
Nadeem, S. M., Rao, D. D., Arora, A., Dongre, Y. V., Giri, R. K., & Jaison, B. (2024, June). Design and Optimization of Adaptive Network Coding Algorithms for Wireless Networks. In 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT) (pp. 1-5). IEEE.
Rao, D. D., Bala Dhandayuthapani, V., Subbalakshmi, C., Singh, M. P., Shukla, P. K., & Pandit, S. V. (2024). An efficient Analysis of the Fusion of Statistical-Centred Clustering and Machine Learning for WSN Energy Efficiency. Fusion: Practice & Applications, 15(2).
Alabdeli, H., Rafi, S., Naveen, I. G., Rao, D. D., & Nagendar, Y. (2024, April). Photovoltaic Power Forecasting Using Support Vector Machine and Adaptive Learning Factor Ant Colony Optimization. In 2024 Third International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE) (pp. 1-5). IEEE.
Bairwa, A. K., Yadav, R., Rao, D. D., Naidu, K., HC, Y., & Sharma, S. (2024). Implications of Cyber-Physical Adversarial Attacks on Autonomous Systems. Int. J. Exp. Res. Rev, 46, 273-284.
Ayyalasomayajula, S., Rao, D. D., Goel, M., Khan, S., Hemalatha, P. K., & Sahu, P. K. A Mathematical Real Analysis on 2D Connection Spaces for Network Cyber Threats: A SEIAR-Neural Network Approach.
Wang, C., Zhou, W., Liao, X., Wang, X., & Chen, Z. (2018). Covalent immobilization of metal organic frameworks onto chemical resistant poly (ether ether ketone) jacket for stir bar extraction. Analytica Chimica Acta, 1025, 124-133.