CMHRJ
  • Register
  • Login
##common.pageHeaderLogo.altText##
  • Home
  • About
    • About the Journal
    • Author Guideline
    • Open access
    • Publication Charges
    • Indexing
    • Copyright Form
    • Plagiarism policy
    • Copyright policy
    • Privacy Statement
    • Digital archiving policy
    • Publication Ethics
    • Review Process
  • Editorial Team
  • Current
  • Archives
  • Submissions
  • Manuscript Template
  • Contact
Advanced Search
  1. Home
  2. Archives
  3. Vol. 3 No. 3 (2023): May - June
  4. Articles

Vol. 3 No. 3 (2023)

May 2023

An Overview of Major Clinical Predictive Factors and Prognostic Biomarkers of Diabetic Kidney Disease in Children and Adolescents

  • Suraj Arungiri Gosai
  • Abdul Khalid Qadree
  • Ajay Singh
  • Manisha Chavan
  • Oso Bolanle Idowu

Clinical Medicine And Health Research Journal, Vol. 3 No. 3 (2023), 9 May 2023 , Page 392-408
https://doi.org/10.18535/cmhrj.v3i3.170 Published 9 May 2023

  • View Article
  • Download
  • Cite
  • Reference
  • Statastics
  • Share

Abstract

The onset and progression of diabetic nephropathy represent a significant issue in diabetic management as it is the primary microvascular consequence of both type 1 and type 2 diabetes mellitus and a significant contributor to end stage renal disease-related mortality. Major risk factors for nephropathy in children and adolescents include hyperglycemia, HbA1c, diabetes duration, gender, blood pressure, dyslipidemia, uric acid, family history and genetic factors, smoking, puberty, and obesity. Metabolism and hemodynamic variables interact on a complex basis during disease development. A series of intricate molecular events take place in response to hyperglycemia, which disturbs the body's metabolic environment and causes glomerular enlargement, tubular inflammation, mesangial expansion, oxidative stress, and renal fibrosis. Fortunately, the main approaches for preventing the beginning and reducing the progression of diabetic kidney damage are rigorous glucose control and antihypertensive medications. As children and adolescents with T1D are at risk for developing early diabetic nephropathy, patients with T1D must have the best metabolic control, an early diagnosis, and timely treatment of dyslipidemia and hypertension. Prospects for better diabetic nephropathy outcomes are improving as novel approaches are developed. Novel biomarkers are increasingly proven to be more reliable instruments than the traditional microalbuminuria, which can forecast the development of disease. In addition to glomerular and tubular indicators, inflammation and oxidative stress markers have proven to be reliable diagnostic aids. In order to emphasize the methods being employed lately to enhance therapeutic approaches in diabetic nephropathy, certain emerging critical biomarkers are illustrated in this review.

Keywords:
  • Diabetes, diabetic kidney disease, diabetic nephropathy, risk factors, biomarkers, microalbuminuria.
    PDF

How to Cite

Arungiri Gosai, S. ., Khalid Qadree, A. ., Singh, A. ., Chavan, M. ., & Bolanle Idowu, O. . (2023). An Overview of Major Clinical Predictive Factors and Prognostic Biomarkers of Diabetic Kidney Disease in Children and Adolescents. Clinical Medicine And Health Research Journal, 3(3), 392–408. https://doi.org/10.18535/cmhrj.v3i3.170
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver

  • Download Citation

    • Endnote/Zotero/Mendeley (RIS)
    • BibTeX

    References

  • IDF Diabetes Atlas 8th Edition 2017. https://www.idf.org/61-about/550-diabetes-in-children-and-adolescents.html
  • Gomber A, Ward ZJ, Ross C, Owais M, Mita C, Yeh JM, et al. (2022) Variation in the incidence of type 1 diabetes mellitus in children and adolescents by world region and country income group: A scoping review. PLOS Glob Public Health 2(11): e0001099. https://doi.org/10.1371/journal.pgph.0001099
  • Pettitt DJ, Talton J, Dabelea D, Divers J, Imperatore G, Lawrence JM, Liese AD, Linder B, Mayer-Davis EJ, Pihoker C, Saydah SH, Standiford DA, Hamman RF ; SEARCH for Diabetes in Youth Study Group (2014) Prevalence of diabetes in U.S. youth in 2009: the SEARCH for diabetes in youth study. Diabetes Care. 37(2):402-8. doi: 10.2337/dc13-1838. Epub 2013 Sep 16. PMID: 24041677; PMCID: PMC3898760.
  • Candler TP, Mahmoud O, Lynn RM, Majbar AA, Barrett TG, Shield JPH (2018) Continuing rise of Type 2 diabetes incidence in children and young people in the UK. Diabet Med. 35(6):737-744. doi: 10.1111/dme.13609. Epub 2018 Mar 24. PMID: 29460341; PMCID: PMC5969249.
  • Diabetes Control and Complications Trial Research Group; Nathan DM, Genuth S, Lachin J, Cleary P, Crofford O, Davis M, Rand L, Siebert C (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 30;329(14):977-86. doi: 10.1056/NEJM199309303291401. PMID: 8366922.
  • Orchard TJ, Secrest AM, Miller RG, Costacou T(2010) In the absence of renal disease, 20 year mortality risk in type 1 diabetes is comparable to that of the general population: a report from the Pittsburgh Epidemiology of Diabetes Complications Study. Diabetologia. 53(11):2312-9. doi: 10.1007/s00125-010-1860-3. .
  • Afkarian M, Sachs MC, Kestenbaum B, Hirsch IB, Tuttle KR, Himmelfarb J, de Boer IH (2013) Kidney disease and increased mortality risk in type 2 diabetes. J Am Soc Nephrol. 24(2):302-8. doi: 10.1681/ASN.2012070718.
  • Dart AB, Sellers EA, Martens PJ, Rigatto C, Brownell MD, Dean HJ (2012) High burden of kidney disease in youth-onset type 2 diabetes. Diabetes Care. 35(6):1265-71. doi: 10.2337/dc11-2312.
  • Osterby R.(1972) Morphometric studies of the peripheral glomerular basement membrane in early juvenile diabetes. I. Development of initial basement membrane thickening. Diabetologia. 8(2):84-92. doi: 10.1007/BF01235631.
  • Mauer SM, Steffes MW, Ellis EN, Sutherland DE, Brown DM, Goetz FC (1984) Structural-functional relationships in diabetic nephropathy. J Clin Invest. 74(4):1143-55. doi: 10.1172/JCI111523.
  • Brito PL, Fioretto P, Drummond K, Kim Y, Steffes MW, Basgen JM, Sisson-Ross S, Mauer M(1998) Proximal tubular basement membrane width in insulin-dependent diabetes mellitus. Kidney Int. 53(3):754-61. doi: 10.1046/j.1523-1755.1998.00809.x.
  • Thomas MC, Brownlee M, Susztak K, Sharma K, Jandeleit-Dahm KA, Zoungas S, Rossing P, Groop PH, Cooper ME (2015) Diabetic kidney disease. Nat Rev Dis Primers.1:15018. doi: 10.1038/nrdp.2015.18.
  • King P, Peacock I, Donnelly R (1999) The UK prospective diabetes study (UKPDS): clinical and therapeutic implications for type 2 diabetes. Br J Clin Pharmacol. 48(5):643-8. doi: 10.1046/j.1365-2125.1999.00092.x.
  • Thomas MC, Macisaac RJ, Jerums G, Weekes A, Moran J, Shaw JE, Atkins RC (2009) Nonalbuminuric renal impairment in type 2 diabetic patients and in the general population (national evaluation of the frequency of renal impairment cO-existing with NIDDM [NEFRON] 11). Diabetes Care. 32(8):1497-502. doi: 10.2337/dc08-2186.
  • Perkins BA, Ficociello LH, Silva KH, Finkelstein DM, Warram JH, Krolewski AS (2003) Regression of microalbuminuria in type 1 diabetes. N Engl J Med. 348(23):2285-93. doi: 10.1056/NEJMoa021835.
  • Molitch ME, Steffes M, Sun W, Rutledge B, Cleary P, de Boer IH, Zinman B, Lachin J; Epidemiology of Diabetes Interventions and Complications Study Group (2010) Development and progression of renal insufficiency with and without albuminuria in adults with type 1 diabetes in the diabetes control and complications trial and the epidemiology of diabetes interventions and complications study. Diabetes Care. 33(7):1536-43. doi: 10.2337/dc09-1098.
  • Dodge WF, West EF, Smith EH, Bruce Harvey 3rd (1976) Proteinuria and hematuria in schoolchildren: epidemiology and early natural history. J Pediatr. 88(2):327-47. doi: 10.1016/s0022-3476(76)81012-8.
  • Vehaskari VM, Rapola J (1982) Isolated proteinuria: analysis of a school-age population. J Pediatr. 101(5):661-8. doi: 10.1016/s0022-3476(82)80287-4.
  • Park YH, Choi JY, Chung HS, Koo JW, Kim SY, Namgoong MK, Park YS, Yoo KH, Lee KY, Lee DY, Lee SJ, Lee JE, Chung WY, Hah TS, Cheong HI, Choi Y, Lee KS (2005) Hematuria and proteinuria in a mass school urine screening test. Pediatr Nephrol. 20(8):1126-30. doi: 10.1007/s00467-005-1915-8.
  • Chandar J, Gómez-Marín O, del Pozo R, Sanders L, Montane B, Abitbol C, Strauss J, Zilleruelo G (2005) Role of routine urinalysis in asymptomatic pediatric patients. Clin Pediatr (Phila). 44(1):43-8. doi: 10.1177/000992280504400105.
  • Brandt JR, Jacobs A, Raissy HH, Kelly FM, Staples AO, Kaufman E, Wong CS (2010) Orthostatic proteinuria and the spectrum of diurnal variability of urinary protein excretion in healthy children. Pediatr Nephrol. 25(6):1131-7. doi: 10.1007/s00467-010-1451-z.
  • Skinner AM, Addison GM, Price DA (1996) Changes in the urinary excretion of creatinine, albumin and N-acetyl-beta-D-glucosaminidase with increasing age and maturity in healthy schoolchildren. Eur J Pediatr. 155(7):596-602. doi: 10.1007/BF01957912.
  • Davies AG, Postlethwaite RJ, Price DA, Burn JL, Houlton CA, Fielding BA (1984) Urinary albumin excretion in school children. Arch Dis Child. 59(7):625-30. doi: 10.1136/adc.59.7.625.
  • Remer T, Neubert A, Maser-Gluth C (2002) Anthropometry-based reference values for 24-h urinary creatinine excretion during growth and their use in endocrine and nutritional research. Am J Clin Nutr.75(3):561-9. doi: 10.1093/ajcn/75.3.561.
  • Hanevold CD, Pollock JS, Harshfield GA (2008) Racial differences in microalbumin excretion in healthy adolescents. Hypertension. 51(2):334-8. doi: 10.1161/HYPERTENSIONAHA.107.098095.
  • Jones CA, Francis ME, Eberhardt MS, Chavers B, Coresh J, Engelgau M, Kusek JW, Byrd-Holt D, Narayan KM, Herman WH, Jones CP, Salive M, Agodoa LY (2002) Microalbuminuria in the US population: third National Health and Nutrition Examination Survey. Am J Kidney Dis.39(3):445-59. doi: 10.1053/ajkd.2002.31388.
  • Francis J, Rose SJ, Raafat F, Milford DV (1997) Early onset of diabetic nephropathy. Arch Dis Child. 77(6):524-5. doi: 10.1136/adc.77.6.524.
  • Rodbard D (2009) New and improved methods to characterize glycemic variability using continuous glucose monitoring. Diabetes Technol Ther. 11(9):551-65. doi: 10.1089/dia.2009.0015.
  • Rodbard D (2009) Interpretation of continuous glucose monitoring data: glycemic variability and quality of glycemic control. Diabetes Technol Ther. 11 Suppl 1:S55-67. doi: 10.1089/dia.2008.0132.
  • Raman S, Dai H, DeLurgio SA, Williams DD, Lind M, Patton SR, Spertus JA, Kosiborod M, Clements MA (2016) High hemoglobin A1c variability is associated with early risk of microalbuminuria in children with T1D. Pediatr Diabetes. 17(6):398-406. doi: 10.1111/pedi.12300.
  • Kilpatrick ES, Rigby AS, Atkin SL (2008). A1C variability and the risk of microvascular complications in type 1 diabetes: data from the Diabetes Control and Complications Trial. Diabetes Care. 31(11):2198-202. doi: 10.2337/dc08-0864.
  • Wadén J, Forsblom C, Thorn LM, Gordin D, Saraheimo M, Groop PH; Finnish Diabetic Nephropathy Study Group (2009) A1C variability predicts incident cardiovascular events, microalbuminuria, and overt diabetic nephropathy in patients with type 1 diabetes. Diabetes. 58(11):2649-55. doi: 10.2337/db09-0693.
  • Marcovecchio ML, Dalton RN, Chiarelli F, Dunger DB (2011) A1C variability as an independent risk factor for microalbuminuria in young people with type 1 diabetes. Diabetes Care. 34(4):1011-3. doi: 10.2337/dc10-2028.
  • Raile K, Galler A, Hofer S, Herbst A, Dunstheimer D, Busch P, Holl RW (2007) Diabetic nephropathy in 27,805 children, adolescents, and adults with type 1 diabetes: effect of diabetes duration, A1C, hypertension, dyslipidemia, diabetes onset, and sex. Diabetes Care. 30(10):2523-8. doi: 10.2337/dc07-0282.
  • Mortensen HB, Hougaard P (1997) Comparison of metabolic control in a cross-sectional study of 2,873 children and adolescents with IDDM from 18 countries. The Hvidøre Study Group on Childhood Diabetes. Diabetes Care. 20(5):714-20. doi: 10.2337/diacare.20.5.714.
  • Schultz CJ, Konopelska-Bahu T, Dalton RN, Carroll TA, Stratton I, Gale EA, Neil A, Dunger DB (1999) Microalbuminuria prevalence varies with age, sex, and puberty in children with type 1 diabetes followed from diagnosis in a longitudinal study. Oxford Regional Prospective Study Group. Diabetes Care. 22(3):495-502. doi: 10.2337/diacare.22.3.495.
  • Holl RW, Grabert M, Thon A, Heinze E (1999) Urinary excretion of albumin in adolescents with type 1 diabetes: persistent versus intermittent microalbuminuria and relationship to duration of diabetes, sex, and metabolic control. Diabetes Care . 22 (9): 1555–1560. https://doi.org/10.2337/diacare.22.9.1555
  • Rudberg S, Ullman E, Dahlquist G (1993) Relationship between early metabolic control and the development of microalbuminaria – a longitudinal study in children with type 1 (insulin dependent) diabetes mellitus. Diabetologia.36:1309-1314.
  • Jones CA, Leese GP, Kerr S, Bestwick K, Isherwood DI, Vora JP, Hughes DA, Smith C (1998) Development and progression of icroalbuminuria in a clinical sample of patients with insulin dependent diabetes mellitus. Arch Dis Child.78:518-523.
  • Andersen AR, Christiansen JS, Andersen JK, Kreiner S, Deckert T (1983) Diabetic nephropathy in type 1 (insulin resistant) diabetes: an epidemiological study. Diabetologia.25:496-501.
  • Orchard TJ, Dorman JS, Maser RE, Becker DJ, Drash AL, Ellis D, LaPorte RE, Kuller LH (1990) Prevalence of complications in IDDM by sex and duration. Pittsburgh Epidemiology of Diabetes Complications Study II. Diabetes. 39(9):1116-24. doi: 10.2337/diab.39.9.1116.
  • Daniels M, DuBose SN, Maahs DM, Beck RW, Fox LA, Gubitosi-Klug R, Laffel LM, Miller KM, Speer H, Tamborlane WV, Tansey MJ (2013) T1D Exchange Clinic Network. Factors associated with microalbuminuria in 7,549 children and adolescents with type 1 diabetes in the T1D Exchange clinic registry. Diabetes Care. 36(9):2639-45. doi: 10.2337/dc12-2192.
  • Mathiesen ER, Saurbrey N, Hommel E, Parving HH (1986) Prevalence of microalbuminuria in children with type 1 (insulin-dependent) diabetes mellitus. Diabetologia. 29(9):640-3. doi: 10.1007/BF00869263.
  • Molitch ME, DeFronzo RA, Franz MJ, Keane WF, Mogensen CE, Parving HH, Steffes MW (2004) American Diabetes Association. Nephropathy in diabetes. Diabetes Care. 27 Suppl 1:S79-83. doi: 10.2337/diacare.27.2007.s79.
  • Control TD, Group CD (1995) Effect of intensive therapy on the development and progression of diabetic nephropathy in the Diabetes Control and Complications Trial. Kidney International. 47(6):1703-20.
  • Control TD, Group CT (1995) Effect of intensive diabetes management on macrovascular events and risk factors in the Diabetes Control and Complications Trial. The American Journal of Cardiology. 75(14):894-903.
  • Krolewski AS, Laffel LMB, Krolewski M, Quinn M, Warram JH (1995) Glycosylated hemoglobin and the risk of microalbuminuria in patients with insulin-dependent diabetes mellitus. N Engl J Med. 332:1251-1255.
  • Bojestig M, Amquist HJ, Karlberg BE, Ludvigsson J (1996) Glycemic control and prognosis in type 1 diabetes patients with microalbuminaria. Diabetes Care. 19:315-317.
  • Rudberg S, Dahlquist G (1996) Determinants of progression of microalbuminuria in adolescents with IDDM. Diabetes Care. 1 9 : 3 6 9 – 371.
  • Janner M, Knill SE, Diem P, Zuppinger KA, Mullis PE (1994) Persistent microalbuminuria in adolescents with type I (insulin-dependent) diabetes mellitus is associated to early rather than late puberty. Eur J Pediatr. 1 5 3 : 4 0 3 – 4 0 8 .
  • Cho YH, Craig ME, Hing S, Gallego PH, Poon M, Chan A, Donaghue KC. (2012) Microvascular complications assessment in adolescents with 2- to 5-yr duration of type 1 diabetes from 1990 to 2006. Pediatr Diabetes. 2011 Dec;12(8):682-9. doi: 10.1111/j.1399-5448.2011.00762.x. Epub 2011 Mar 24. Erratum in: Pediatr Diabetes. 13(1):135.
  • Alleyn CR, Volkening LK, Wolfson J, Rodriguez-Ventura A, Wood JR, Laffel LM (2010) Occurrence of microalbuminuria in young people with Type 1 diabetes: importance of age and diabetes duration. Diabet Med. 27(5):532-7. doi: 10.1111/j.1464-5491.2010.02983.x.
  • Chiumello G, Bognetti E, Meschi F, Carrà M, Balzano E (1989) Early diagnosis of subclinical complications in insulin dependent diabetic children and adolescents. J Endocrinol Invest. 12(8 Suppl 3):101-4.
  • Maahs DM, Snively BM, Bell RA, Dolan L, Hirsch I, Imperatore G, Linder B, Marcovina SM, Mayer-Davis EJ, Pettitt DJ, Rodriguez BL, Dabelea D (2007) Higher prevalence of elevated albumin excretion in youth with type 2 than type 1 diabetes: the SEARCH for Diabetes in Youth study. Diabetes Care. 30(10):2593-8. doi: 10.2337/dc07-0450.
  • Stone ML, Craig ME, Chan AK, Lee JW, Verge CF, Donaghue KC (2006) Natural history and risk factors for microalbuminuria in adolescents with type 1 diabetes: a longitudinal study. Diabetes Care. 29(9):2072-7. doi: 10.2337/dc06-0239.
  • Twyman S, Rowe D, Mansell P, Schapira D, Betts P, Leatherdale B; Wessex Diabetic Nephropathy Project (2001) Longitudinal study of urinary albumin excretion in young diabetic patients--Wessex Diabetic Nephropathy Project. Diabet Med. 18(5):402-8. doi: 10.1046/j.1464-5491.2001.00484.x.
  • Moore TH, Shield JP (2000) Prevalence of abnormal urinary albumin excretion in adolescents and children with insulin dependent diabetes: the MIDAC study. Microalbinuria in Diabetic Adolescents and Children (MIDAC) research group. Arch Dis Child. 83(3):239-43. doi: 10.1136/adc.83.3.239.
  • Diabetes Control and Complications Trial Research Group (1994) Effect of intensive diabetes treatment on the development and progression of long-term complications in adolescents with insulin-dependent diabetes mellitus: Diabetes Control and Complications Trial. J Pediatr. 125(2):177-88. doi: 10.1016/s0022-3476(94)70190-3.
  • Laffel LM, McGill JB, Gans DJ (1995) The beneficial effect of angiotensin-converting enzyme inhibition with captopril on diabetic nephropathy in normotensive IDDM patients with microalbuminuria. North American Microalbuminuria Study Group. Am J Med. 99(5):497-504. doi: 10.1016/s0002-9343(99)80226-5.
  • Danne T, Kordonouri O, Hovener G, Weber B (1997) Diabetic angiopathy in children. Diabetic Medicine. 14(12);1012-25.
  • Zabeen B, Nahar J, Islam N, Azad K, Donaghue K (2018) Risk Factors Associated with Microalbuminuria in Children and Adolescents with Diabetes in Bangladesh. Indian J Endocrinol Metab. 22(1):85-88. doi: 10.4103/ijem.IJEM_269_17.
  • Svensson M, Eriksson JW, Dahlquist G (2004) Early glycemic control, age at onset, and development of microvascular complications in childhood-onset type 1 diabetes: a population-based study in northern Sweden. Diabetic Care. 27:955-962
  • TODAY Study Group (2013) Rapid rise in hypertension and nephropathy in youth with type 2 diabetes: the TODAY clinical trial. Diabetes Care. 36(6):1735-41. doi: 10.2337/dc12-2420.
  • Caramori ML, Fioretto P, Mauer M (2000) The need for early predictors of diabetic nephropathy risk: is albumin excretion rate sufficient? Diabetes. 49(9):1399-408. doi: 10.2337/diabetes.49.9.1399.
  • Jenkins AJ, Lyons TJ, Zheng D, Otvos JD, Lackland DT, McGee D, Garvey WT, Klein RL; DCCT/EDIC Research Group (2003) Lipoproteins in the DCCT/EDIC cohort: associations with diabetic nephropathy. Kidney Int. 64(3):817-28. doi: 10.1046/j.1523-1755.2003.00164.x.
  • Hovind P, Rossing P, Tarnow L, Smidt UM, Parving HH (2001) Progression of diabetic nephropathy. Kidney Int. 2001 Feb;59(2):702-9. doi: 10.1046/j.1523-1755.2001.059002702.x.
  • Skrivarhaug T, Bangstad HJ, Stene LC, Sandvik C, Hanssen KF, Joner G (2006) Low risk of overt nephropathy after 24 years of childhood-onset type 1 diabetes mellitus (T1DM) in Norway. Pediatric Diabetes. 7(5): 239-246.
  • Perkins BA, Ficociello LH, Silva KH, Finkelstein DM, Warram JH, Krolewski AS (2003) Regression of microalbuminuria in type1 diabetes. N Engl J Med. 348:2285-2293.
  • Kostraba JN, Dorman JS, Orchard TJ, Becker DJ, Ohki Y, Ellis D, Doft BH, Lobes LA, LaPorte RE, Drash AL (1989) Contribution of diabetes duration before puberty to development of microvascular complications in IDDM subjects. Diabetes Care. 12:686–693
  • Donaghue KC, Fairchild JM, Craig ME, Chan AK, Hing S, Cutler LR, Howard LR, Silink M (2003) Do all prepubertal years of diabetes duration contribute equally to diabetes complications? Diabetes Care.26:1224–1229
  • Schultz CJ, Neil HA, Dalton RN, Dunger DB; Oxford Regional Prospective Study Group (2000) Risk of nephropathy can be detected before the onset of microalbuminuria during the early years after diagnosis of type 1 diabetes. Diabetes Care. 23:1811– 1815
  • Svensson M, Eriksson JW, Dahlquist G (2004) Early glycemic control, age at onset, and development of microvascular complications in childhood-onset type diabetes. Diabetes Care. 27:955–962
  • Gallego PH, Bulsara MK, Frazer F, Lafferty AR, Davis EA, Jones TW (2006) Prevalence and risk factors for microalbuminuria in a population-based sample of children and adolescents with T1DM in Western Australia. Pediatr Diabetes. 7:165–172
  • Svensson M, Nystrom L, Schon S, Dahlquist G (2006) Age at onset of childhood-onset type 1 diabetes and the development of end-stage renal disease. Diabetes Care. 29:538–542
  • Barkai L, Vamosi I, Lukacs K (1998) Enchanced progression of urinary albumin excretion in IDDM during puberty. Diabetes Care. 21:1019–1023
  • Hargrave DR, Mc Master C, O'Hare MM, Carson DJ (1999) Tobacco smoke exposure in children and adolescents with diabetes mellitus. Diabet Med. 16:31–34
  • Holl RW, Grabert M, Heinze E, Debatin KM (1998) Objective assessment of smoking habits by urinary cotinine measurement in adolescents and young adults with type I diabetes: Reliability of cigarette consumption and relationship to urinary albumin excretion. Diabetes Care. 21:787–791
  • Sawicki PT, Didjurgeit U, Muhlhauser I, Bender R, Heinemann L, Berger M (1994) Smoking is associated with progression of diabetic nephropathy. Diabetes Care. 17:1216–1231
  • Scott LJ, Warram JH, Hanna LS, Laffel LM, Ryan L, Krolewski AS (2004) A nonlinear effect of hyperglycemia and current cigarette smoking as major determinants of the onset of microalbuminuria in type 1 diabetes. Diabetes.50:2842–2849
  • Harvey JN, Allagoa B (2004) The long-term renal and retinal outcome of childhood-onset type 1 diabetes. Diabet Med.21:26– 31
  • Orth SR, Schroeder T, Ritz E, Ferrari P (2005) Effects of smoking on renal function in patients with type 1 and type 2 diabetes mellitus. Nephrol Dial Transplant. 20:2414–2419
  • Couper JJ, Staples AJ, Cocciolone R, Nairn J, Badcock N, Henning P (1994) Relationship of smoking and albuminuria in children with insulin-dependent diabetes. Diabet Med. 11:666– 669
  • Bangstad HJ, Osterby R, Rundberg S, Hartmann A, Brabrand K, Hanssen KF (2002) Kidney function and glomerulopathy over 8 years in young patients with type I (insulin-dependent) diabetes mellitus and microalbuminuria. Diabetologia. 45:253–261
  • World Health Organization . Geneva (Switzerland): World Health Organization (2020) Obesity and overweight [Internet] [cited 2020 Apr 1]. Available from: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight.
  • Maring B, Greenspan LC, Chandra M, Daniels SR, Sinaiko A, Prineas RJ (2015) Comparing US paediatric and adult weight classification at the transition from late teenage to young adulthood. Pediatr Obes. 10:371–9.
  • Umer A, Kelley GA, Cottrell LE, Giacobbi P, Jr, Innes KE, Lilly CL (2017) Childhood obesity and adult cardiovascular disease risk factors: a systematic review with meta-analysis. BMC Public Health. 17:683.
  • Lalan S, Jiang S, Ng DK, Kupferman F, Warady BA, Furth S (2018) Cardiometabolic risk factors, metabolic syndrome, and chronic kidney disease progression in children. J Pediatr. 202:163–70.
  • Liu LL, Lawrence JM, Davis C, Liese AD, Pettitt DJ, Pihoker C, Dabelea D, Hamman R, Waitzfelder B, Kahn HS; SEARCH for Diabetes in Youth Study Group. Prevalence of overweight and obesity in youth with diabetes in USA: the SEARCH for Diabetes in Youth study. Pediatr Diabetes. 11(1):4-11. doi: 10.1111/j.1399-5448.2009.00519.x.
  • Chagnac A, Zingerman B, Rozen-Zvi B, Herman-Edelstein (2019). Consequences of glomerular hyperfiltration: the role of physical forces in the pathogenesis of chronic kidney disease in diabetes and obesity. Nephron. 143:38–42.
  • D'Agati VD, Chagnac A, de Vries AP, Levi M, Porrini E, Herman-Edelstein M, et al.(2016) Obesity-related glomerulopathy: clinical and pathologic characteristics and pathogenesis. Nat Rev Nephrol. 12:453–71.
  • Hallow KM, Gebremichael Y, Helmlinger G, Vallon V (2017) Primary proximal tubule hyperreabsorption and impaired tubular transport counterregulation determine glomerular hyperfiltration in diabetes: a modeling analysis. Am J Physiol Renal Physiol. 312:F819–35.
  • Vallon V, Thomson SC (2020) The tubular hypothesis of nephron filtration and diabetic kidney disease. Nat Rev Nephrol. 16:317–36.
  • Shah S, Hussain T (2006) Enhanced angiotensin II-induced activation of Na+, K+-ATPase in the proximal tubules of obese Zucker rats. Clin Exp Hypertens. 28:29–40.
  • Hovind P, Rossing P, Tarnow L, Johnson RJ, Parving HH (2009) Serum uric acid as a predictor for development of diabetic nephropathy in type 1 diabetes: an inception cohort study. Diabetes. 58(7):1668-71. doi: 10.2337/db09-0014.
  • Menè, Paoloa,b; Punzo, Giorgioc (2008) Uric acid: bystander or culprit in hypertension and progressive renal disease?. Journal of Hypertension 26(11):p 2085-2092.DOI: 10.1097/HJH.0b013e32830e4945
  • Rosolowsky ET, Ficociello LH, Maselli NJ, Niewczas MA, Binns AL, Roshan B, Warram JH, Krolewski AS (2008) High-normal serum uric acid is associated with impaired glomerular filtration rate in nonproteinuric patients with type 1 diabetes. Clin J Am Soc Nephrol. 3(3):706-13. doi: 10.2215/CJN.04271007.
  • Behradmanesh S, Horestani MK, Baradaran A, Nasri H (2013) Association of serum uric acid with proteinuria in type 2 diabetic patients. J Res Med Sci. 18(1):44–46.
  • Unnikrishnan B, Mookambika RV, Ashok VG (2017) A Study on Serum Uric Acid and Proteinuria in Association with Diabetic Nephropathy among Type 2 Diabetic Patients in a Teritary Care Centre. J Med Sci Clin Res. (5):19820–19824.
  • Neupane S, Dubey RK, Gautam N, Agrawal KK, Jayan A, Shrestha S, et al.(2016) Association between serum uric acid, urinary albumin excretion, and glycated hemoglobin in Type 2 diabetic patient. Niger Med J. 57(2):119–123. doi:10.4103/0300-1652.182074.
  • Prasad Sah OS, Qing YX (2015) Associations Between Hyperuricemia and Chronic Kidney Disease: A Review. Nephrourol Mon. 7(3):e27233. doi: 10.5812/numonthly.7(3)2015.27233.
  • Rey, A., Batteux, B., Laville, S.M. et al. (2019) Acute kidney injury associated with febuxostat and allopurinol: a post-marketing study. Arthritis Res Ther 21, 229 https://doi.org/10.1186/s13075-019-2011-y
  • Ballard DJ, Humphrey LL, Melton LJ 3rd, Frohnert PP, Chu PC, O’Fallon WM, Palumbo PJ (1998) Epidemiology of persistent proteinuria in type II diabetes mellitus. Population-based study in Rochester, Minnesota. Diabetes.37:405–412
  • Rich SS (2006) Genetics of diabetes and its complications. J Am Soc Nephrol. 17:353–360
  • Rippin JD, Patel A, Bain SC (2001) Genetics of diabetic nephropathy. Best Pract Res Clin Endocrinol Metab. 15:345–358
  • Seaquist ER, Goetz FC, Rich S, Barbosa J (1989) Familial clustering of diabetic kidney disease. Evidence for genetic susceptibility to diabetic nephropathy. N Engl J Med. 320:1161–1165
  • Quinn M, Angelico MC, Warram JH, Krolewski AS (1996) Familial factors determine the development of diabetic nephropathy in patients with IDDM. Diabetologia.39:940–945
  • DCCT Research Group (1997) Clustering of long-term complications in families with diabetes in the diabetes control and complications trial. Diabetes. 46:1829–1839
  • Fioretto P, Steffes MW, Barbosa J, Rich SS, Miller ME, Mauer M (1999) Is diabetic nephropathy inherited? Studies of glomerular structure in type 1 diabetic sibling pairs. Diabetes. 48:865–869
  • Roglic G, Colhoun HM, Stevens LK, Lemkes HH, Manes C, Fuller JH (1998) Parental history of hypertension and parental history of diabetes and microvascular complications in insulindependent diabetes mellitus: the EURODIAB IDDM complications study. Diabet Med. 15:418–426
  • Rudberg S, Stattin EL, Dahlquist G (1998) Familial and perinatal risk factors for micro- and macroalbuminuria in young IDDM patients. Diabetes. 47:1121–1126
  • Fagerudd JA, Pettersson-Fernholm KJ, Gronhagen-Riska C, Groop PH (1999) The impact of a family history of type II (non-insulin-dependent) diabetes mellitus on the risk of diabetic nephropathy in patients with type I (insulin-dependent) diabetes mellitus. Diabetologia. 42:519–526
  • Mangili R, Bending JJ, Scott G, Li LK, Gupta A, Viberti GC (1988) Increased sodium-lithium countertransport activity in red cells of patients with insulin-dependent diabetes and nephropathy. N Engl J Med. 318:146–150
  • Lurbe A, Fioretto P, Barbosa J, Mauer M, LaPointe MS, Battle D (1996) Growth phenotype of cultured skin fibroblasts from IDDM patients with and without nephropathy and overactivity of the Na/H antiporter. Kidney Int. 50:1684–1693
  • Fujisawa T, Ikegami H, Kawaguchi Y, Hamada Y, Vesta H, Shintani M, Fukuda M, Ogihara T (1998) Meta-analysis of association of insertion/deletion polymorphism of angiotensin I-converting enzyme gene with diabetic nephropathy and retinopathy. Diabetologia. 41:47–53
  • Hadjadj S, Belloum R, Bouhanick B Gallois Y, Guilloteau G, Chatellier G, Alhenc-Gelas F, Marre M (2005) Prognostic value of angiotensin-I converting enzyme I/D polymorphism for nephropathy in type I diabetes mellitus: a prospective study. J Am Soc Nephrol. 12:541–549
  • Penno G, Chaturvedi N, Talmud PJ, Cotroneo P, Manto A, Nannigieri M, Luong LA, Fuller JH (1998) Effect of angiotensin converting enzyme (ACE) gene polymorphism on progression of renal disease and the influence of ACE inhibition in IDDM patients. Diabetes. 47:1507–1511
  • Jacobsen P, Andersen S, Jensen BR, Parving HH (2003) Additive effect of ACE-inhibition and angiotensin II receptor blockade in type 1 diabetic patients with diabetic nephropathy. J Am Soc Nephrol. 14:992–999
  • Osterholm AM, He B, Pitkaniemi J, Albinsson L, Berg T, Sarti C, Tuomilehto J, Tryggvason K (2007) Genome-wide scan for type 1 diabetic nephropathy in the Finnish population reveals suggestive linkage to a single locus on chromosome 3q. Kidney Int. 71:140–145
  • Gohda T, Nishizaki Y, Murakoshi M, Nojiri S, Yanagisawa N, Shibata T, Yamashita M, Tanaka K, Yamashita Y, Suzuki Y, Kamei N (2018) Clinical predictive biomarkers for normoalbuminuric diabetic kidney disease. Diabetes research and clinical practice. 141:62-8.
  • Griffin TP, Islam MN, Wall D, Ferguson J, Griffin DG, Griffin MD, O’Shea PM (2019) Plasma dephosphorylated-uncarboxylated Matrix Gla-Protein (dp-ucMGP): reference intervals in Caucasian adults and diabetic kidney disease biomarker potential. Scientific reports. 9(1):1-3.
  • Al-Rubeaan K, Nawaz SS, Youssef AM, Al Ghonaim M, Siddiqui K (2019) IL-18, VCAM-1 and P-selectin as early biomarkers in normoalbuminuric Type 2 diabetes patients. Biomarkers in Medicine. 13(6):467-78.
  • Qin Y, Zhang S, Shen X, Zhang S, Wang J, Zuo M, Cui X, Gao Z, Yang J, Zhu H, Chang B (2019) Evaluation of urinary biomarkers for prediction of diabetic kidney disease: a propensity score matching analysis. Ther Adv Endocrinol Metab. 10:2042018819891110. doi: 10.1177/2042018819891110.
  • Carlsson AC, Nowak C, Lind L, Östgren CJ, Nyström FH, Sundström J, Carrero JJ, Riserus U, Ingelsson E, Fall T, Ärnlöv J (2020) Growth differentiation factor 15 (GDF-15) is a potential biomarker of both diabetic kidney disease and future cardiovascular events in cohorts of individuals with type 2 diabetes: a proteomics approach. Ups J Med Sci. 125(1):37-43. doi: 10.1080/03009734.2019.1696430.
  • Siddiqui K, Al-Malki B, George TP, Nawaz SS, Rubeaan KA (2019) Urinary N-acetyl-beta-d-glucosaminidase (NAG) with neutrophil gelatinase-associated lipocalin (NGAL) improves the diagnostic value for proximal tubule damage in diabetic kidney disease. 3 Biotech. 9(3):66. doi: 10.1007/s13205-019-1593-z.
  • Hussain S, Habib A, Hussain MS, Najmi AK (2020) Potential biomarkers for early detection of diabetic kidney disease. Diabetes Research and Clinical Practice. 161:108082.
  • Kurita N, Kinoshita M, Fujimura M, Kurosawa K, Sakuramachi Y, Takano K, Okamura S, Kitatani M, Tsujii S, Norton EC, Hayashino Y; Diabetes Distress and Care Registry at Tenri Study Group (2022) Association of urinary C-megalin with albuminuria and renal function in diabetes: a cross-sectional study (Diabetes Distress and Care Registry at Tenri [DDCRT 21]). J Nephrol. 35(1):201-210. doi: 10.1007/s40620-021-00995-2.
  • Lupușoru G, Ailincăi I, Sorohan BM, Andronesi A, Achim C, Micu G, Caragheorgheopol A, Manda D, Lupușoru M, Ismail G (2021) Serum soluble urokinase plasminogen activator receptor as a potential biomarker of renal impairment severity in diabetic nephropathy. diabetes research and clinical practice. 182:109116.
  • Tan YM, Gao Y, Teo G, Koh HWL, Tai ES, Khoo CM, Choi KP, Zhou L, Choi H (2021) Plasma Metabolome and Lipidome Associations with Type 2 Diabetes and Diabetic Nephropathy. Metabolites. 11(4):228. https://doi.org/10.3390/metabo11040228
  • González-Salvatierra S, García-Fontana C, Andújar-Vera F, Grau-Perales AB, Martínez-Heredia L, Avilés-Pérez MD, Hayón-Ponce M, Iglesias-Baena I, Riquelme-Gallego B, Muñoz-Torres M, García-Fontana B (2021) Osteoglycin as a Potential Biomarker of Mild Kidney Function Impairment in Type 2 Diabetes Patients. J Clin Med. 10(10):2209. doi: 10.3390/jcm10102209.
  • Johnson MJ, Tommerdahl KL, Vinovskis C, Waikar S, Reinicke T, Parikh CR et al. (2022) Relationship between biomarkers of tubular injury and intrarenal hemodynamic dysfunction in youth with type 1 diabetes. Pediatric Nephrology. 37(12):3085-3092. doi: 10.1007/s00467-022-05487-4
  • Ju-Hao Lee, Feng-Jung Yang, Wen-Yu Tsai, Cheng-Ting Lee, Shih-Yao Liu, Wei-Shiung Yang, Yi-Ching Tung (2022) Serum neutrophil gelatinase-associated lipocalin as a potential biomarker of diabetic kidney disease in patients with childhood-onset type 1 diabetes, Journal of the Formosan Medical Association.121(4):832-840
  • Zhu H, Bai M, Xie X, Wang J, Weng C, Dai H, Chen J, Han F, Lin W (2022) Impaired Amino Acid Metabolism and Its Correlation with Diabetic Kidney Disease Progression in Type 2 Diabetes Mellitus. Nutrients. 14(16):3345. doi: 10.3390/nu14163345.
  • Wu, R., Shu, Z., Zou, F et al. (2022) Identifying myoglobin as a mediator of diabetic kidney disease: a machine learning-based cross-sectional study. Sci Rep 12, 21411 . https://doi.org/10.1038/s41598-022-25299-8
  • Swaminathan, S.M., Rao, I.R., Shenoy, S.V et al. (2022)Novel biomarkers for prognosticating diabetic kidney disease progression. Int Urol Nephrol . https://doi.org/10.1007/s11255-022-03354-7
  • Ma J, Li C, Liu T, Zhang L, Wen X, Liu X, Fan W (2022) Identification of Markers for Diagnosis and Treatment of Diabetic Kidney Disease Based on the Ferroptosis and Immune. Oxid Med Cell Longev. 2022:9957172. doi: 10.1155/2022/9957172.
  • Moon JY, Jeong KH, Lee TW., Ihm CG, Lim S. J., Lee SH (2012) Aberrant recruitment and activation of T cells in diabetic nephropathy. American Journal of Nephrology . 35(2):164–174. doi: 10.1159/000334928.
  • Luo M, Zhang Z, Lu Y, Feng W, Wu H, Fan L, Guan B, Dai Y, Tang D, Dong X, Yun C (2022) Urine metabolomics reveals biomarkers and the underlying pathogenesis of diabetic kidney disease. International Urology and Nephrology. 18:1-3.
  • Tao P, Ji J, Wang Q, Cui M, Cao M, Xu Y (2022) The role and mechanism of gut microbiota-derived short-chain fatty in the prevention and treatment of diabetic kidney disease. Frontiers in Immunology. 13.
  • Khodor SA, Shatat IF (2016) Gut microbiome and kidney disease: a bidirectional relationship. Pediatr Nephrology. 32(6):921–31. doi: 10.1007/s00467-016- 3392-7
  • Cong J, Zhou P, Zhang R (2022) Intestinal microbiota-derived short chain fatty acids in host health and disease. Nutrients. 14(9):1977. doi: 10.3390/ nu14091977
  • Mandaliya DK, Seshadri S (2019)Short chain fatty acids, pancreatic dysfunction and type 2 diabetes. Pancreatology. 19(2):280–4. doi: 10.1016/ j.pan.2019.01.021
  • Kim MH, Kang SG, Park JH, Yanagisawa M, Kim CH (2013)Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice. Gastroenterology. 145(2):396–406.e1-10. doi: 10.1053/j.gastro.2013.04.056
  • Li B, Ye S, Fan Y, Lin Y, Li S, Peng H, Diao H, Chen W (2022) Identification of novel key genes and potential candidate small molecule drugs in diabetic kidney disease using comprehensive bioinformatics analysis. Frontiers in Genetics. 13.
  • Zheng Z, Li C, Shao G, Li J, Xu K, Zhao Z, Zhang Z, Liu J, Wu H (2021) Hippo-YAP/MCP-1 mediated tubular maladaptive repair promote inflammation in renal failed recovery after ischemic AKI. Cell Death & Disease. 12(8):754.
  • Yokoyama-Mashima S, Yogosawa S, Kanegae Y, Hirooka S, Yoshida S, Horiuchi T, Ohashi T, Yanaga K, Saruta M, Oikawa T, Yoshida K (2019) Forced expression of DYRK2 exerts anti-tumor effects via apoptotic induction in liver cancer. Cancer letters. 451:100-9.
  • Wu G, Liu H, He H, Wang Y, Lu X, Yu Y, Xia S, Meng X, Liu Y (2014) miR-372 down-regulates the oncogene ATAD2 to influence hepatocellular carcinoma proliferation and metastasis. BMC cancer. 14:1-1.
  • Cao Z, Zhao H, Fan J, Shen Y, Han L, Jing G, Zeng X, Jin X, Zhu Z, Bian Q, Nan Y (2023) Simultaneous blockade of VEGF-B and IL-17A ameliorated diabetic kidney disease by reducing ectopic lipid deposition and alleviating inflammation response. Cell Death Discovery. 9(1):8.
  • Aljada A, Ghanim H, Mohanty P, Syed T, Bandyopadhyay A, Dandona P (2004) Glucose intake induces an increase in activator protein 1 and early growth response 1 binding activities, in the expression of tissue factor and matrix metalloproteinase in mononuclear cells, and in plasma tissue factor and matrix metalloproteinase concentrations. Am J Clin Nutr. 80(1):51-7. doi: 10.1093/ajcn/80.1.51.
  • Uemura S, Matsushita H, Li W, Glassford AJ, Asagami T, Lee KH, Harrison DG, Tsao PS (2001) Diabetes mellitus enhances vascular matrix metalloproteinase activity: role of oxidative stress. Circ Res. 88:1291–8.
  • Li N, Karin M (1999) Is NF-kappaB the sensor of oxidative stress? FASEB J. 1999 Jul;13(10):1137-43.
  • Sato H, Kita M, Seiki M (1993) v-Src activates the expression of 92-kDa type IV collagenase gene through the AP-1 site and the GT box homologous to retinoblastoma control elements. A mechanism regulating gene expression independent of that by inflammatory cytokines. J Biol Chem. 268(31):23460-8.
  • Khokha R, Murthy A, Weiss A (2013) Metalloproteinases and their natural inhibitors in inflammation and immunity. Nat Rev Immunol. 13(9):649-65. doi: 10.1038/nri3499.
  • Pugin J, Widmer MC, Kossodo S, Liang CM, Preas HL2nd, Suffredini AF (1999) Human neutrophils secrete gelatinase B in vitro and in vivo in response to endotoxin and proinflammatory mediators. Am J Respir Cell Mol Biol. 20(3):458-64. doi: 10.1165/ajrcmb.20.3.3311. PMID: 10030844.
  • Vlahos R, Wark PA, Anderson GP, Bozinovski S (2012) Glucocorticosteroids differentially regulate MMP-9 and neutrophil elastase in COPD. PLoS One. 7(3):e33277. doi: 10.1371/journal.pone.0033277.
  • Baggiolini M, Dewald B, Moser B (1994) Interleukin-8 and related chemotactic cytokines--CXC and CC chemokines. Adv Immunol. 55:97-179.
  • Harada A, Sekido N, Akahoshi T, Wada T, Mukaida N, Matsushima K (1994) Essential involvement of interleukin-8 (IL-8) in acute inflammation. J Leukoc Biol. 56(5):559-64.
  • Wang JH, Sexton DM, Redmond HP, Watson RW, Croke DT, Bouchier-Hayes D (1997) Intercellular adhesion molecule-1 (ICAM-1) is expressed on human neutrophils and is essential for neutrophil adherence and aggregation. Shock. 8(5):357-61. doi: 10.1097/00024382-199711000-00007.
  • Van den Steen PE, Proost P, Wuyts A, Van Damme J, Opdenakker G (2000) Neutrophil gelatinase B potentiates interleukin-8 tenfold by aminoterminal processing, whereas it degrades CTAP-III, PF-4, and GRO-alpha and leaves RANTES and MCP-2 intact. Blood. 96(8):2673-81.
  • Van den Steen PE, Wuyts A, Husson SJ, Proost P, Van Damme JO, Opdenakker G (2003) Gelatinase B/MMP‐9 and neutrophil collagenase/MMP‐8 process the chemokines human GCP‐2/CXCL6, ENA‐78/CXCL5 and mouse GCP‐2/LIX and modulate their physiological activities. European Journal of Biochemistry. 270(18):3739-49.
    • Article Viewed: 0 Total Download

    ##plugins.themes.ojsPlusA.frontend.article.downloadstatastics##

    • Linkedin
    • Twitter
    • Facebook
    • Telegram

    Cover Image

    Information

    • For Readers
    • For Authors
    • For Librarians
    • Home
    • Archives
    • Submissions
    • About the Journal
    • Editorial Team
    • Contact
     Open Access Policy || Publication & Peer Review Policy || Publication Ethics
    The publication is licensed under a Creative Commons License (CC BY). View Legal Code
     Clinical Medicine And Health Research Journal
    Clinical Medicine and Health Research Journal (CMHRJ)